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Uncertainty relations and quadratic forms 

F Gesztesyt and L Pittner 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 14 March 1978 

Abstract. We show that sesquilinear form methods can be used to extend the usual 
uncertainty relation for symmetric operators to a larger and more natural domain of states. 

Consider symmetric operators A ,  B and the commutation relation 

C = i[A, B] on D(C)=D(AB)nD(BA) ,  (1) 

AfA . AfB 3 $l<f, Cf)l for all f~ D(C).  (2) 

then one immediately obtains the inequality 

The symmetric operator C need not be essentially self-adjoint, but we assume that C 
allows self-adjoint extensions. Since the product AfA . AfB is defined for all f~ 
D ( A ) n  D(B),  it should be possible (at least under certain additional assumptions) to 
extend the inequality (2) to 

AfA . AfB 3 il(f, Cfll for all f E D ( A ) n D ( B ) n D ( c ) ,  (3) 
where c denotes a suitable self-adjoint extension of C. 

In general, however, one may deduce from relation (1) only a weaker version of 
the inequality (3), where the expectation value cf, e’) is replaced by some quadratic 
form (the weak commutator) (Kraus 1965). But in the special case where the closures 
A, B and are self-adjoint generators of a unitary representation of a two- or 
three-parameter Lie group, and therefore (1) is implied by the structure of the 
corresponding Lie algebra (Nelson 1959, Segal 1951), the uncertainty relation (2) can 
be extended to all states f~ D ( A )  n D ( B )  n D ( c )  (Kraus 1967). 

In this paper, by means of sesquilinear forms, we discuss an extension of the 
inequality (2) in those cases where the commutator C is semi-bounded. In particular 
we relate the possibility of extending (2) and (3) to properties of sesquilinear forms 
such as semi-boundedness and closability. 

Our precise assumptions about A,  B and C are: 
(i) A and B are symmetric operators in a Hilbert space 2. 

(ii) The commutator C = i[A, B] on D(C)=D(AB)nD(BA)  is densely defined 
in X and semi-bounded. 

In the usual way we introduce 

AfA = ll(A --(A)f>fll, (A) ,  = (f, Af) l ( f ,  f), f E D(A) ,  
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In order to relate the right-hand side of (4) to the commutator C, we introduce the 
sesquilinear forms 

4o( f ,  g )  = (f, a), 
q1(f, g>= i(Af, Bg)-i(Bf, Ag), 

D(q0) = D(C) ,  

msl) = D(A) n WB). 
( 5 )  

From (i) and (ii) we conclude that the form qo is densely defined, symmetric, semi- 
bounded and closable (Kato 1966). The self-adjoint operator CO associated with the 
closure qo of qo is just the Friedrichs extension CF of C: 

4o(f, g) = (f, Cog), f E W o ) ,  g E WCo);  CO= CF. (6) 

On the other hand, the form ql, although densely defined and symmetric, need not be 
closable (cf example 1). If 41 is semi-bounded and closable, then the self-adjoint 
operator C1 associated with the closure q1 of ql, 

&(f, g )  = (f, clg)l f E W 1 ) l  g E D(Ci), (7 ) 

evidently is a self-adjoint extension of C, but a priori there is no connection between 
C1 and the Friedrichs extension CO of C (cf example 2). Special assumptions which 
indeed imply CO = C1 are: 

(I) Suppose C is essentially self-adjoint; if 41 is semibounded and closable then 
CO = c1. 

(11) Let B be bounded; if D(C)  is a core of A, then q 1  is semi-bounded and 
closable, and again CO = C1. 

Statement (I) only reflects the uniqueness of the self-adjoint extension of an essen- 
tially self-adjoint operator, while for the proof of (11) it suffices to note that here q1 is a 
restriction of 40. Thus we must distinguish whether the form q1 is semi-bounded and 
closable (case 1) or not (case 2). 

Case 1. From (4) and (7) we immediately obtain the extended inequality (3) in the 
form 

AfA . AfB a$I(f, Cif)[, f~ D(A)n D ( B ) n  D(Cl). (8) 

AfA AfB 4141(f>f)l, f~ D(A)n D ( B ) .  (9) 

Case 2. Here one only gets the weaker relation (Kraus 1965) 

In order to illustrate these statements we turn to explicit examples. We have 
already noted that although qo is closable by definition via C, the form q1 need not 
be closable; actually the pair {angle, angular momentum} represents a prominent 
example for such a situation. 
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Example 1. In the Hilbert space X = L2([-.rr, + T I ;  d 4 )  define the self-adjoint opera- 
tors 

1 d  L = - - on D ( L )  = (flf E A ([-T, +TI); f, f’ E 92’; f(-.rr) = f(+.rr)}, 
i dc$ 

@ = 4  onD(@)=%’, 

where A ( [ a , p ] )  denotes the set of functions which are absolutely continuous on 
[a, p ] .  Then one immediately obtains 

(10) 

- 
iGf, @g>-i(@f, Lg)= (f, g)-2.rrf(.rr)g(.rr), f, g E D(L).  (11) 

L is not essentially self-adjoint on 

D([L,  @])=CflfED(L>;f(-.rr)=f(+.rr)=O}, 

E(L) = 2, 

and the spectra are 

E(@)= [-r, +TI. 
We identify 

C = i[L, a] = 1 on D ( C )  = D([L,  a]) 
and 

- 
41(f,  g)  = (f, g)- 2.rrf(.rr)g(r) on D ( q l )  = D(L). (15) 

- 
The operator C is essentially self-adjoint, but f(.rr)g(.rr) (and hence 41) is the canonical 
example of a non-closable symmetric form. Thus instead of the inequality (8) we only 
have (Kraus 1965) 

A&.  Afo’LfI IVI12-2rlf(.rr)121, f E D(L).  (16) 

For further discussions of this example compare Carruthers and Nieto (1968), Judge 
(1964), Kraus (1965), and LCvy-Leblond (1976). Concerning the pair {phase opera- 
tor, number operator} (Garrison and Wong 1970), exactly the same conclusions can 
be drawn. More generally this situation occurs in all cases where C is essentially 
self-adjoint and C 3 y > 0 (or C S y < 0), while A or B has an eigenstate which lies in 
D ( A ) n  D ( B ) n  D ( c ) .  Suppose C essentially self-adjoint and C 3 y > 0,  Afa = afa 
with fa E D ( A ) n D ( B ) n D ( c ) ;  if 41 were semi-bounded and closable, then one 
would conclude 

AfA . AfB 3 il(f, Cf)l> 0 for all f c D ( A ) n D ( B ) n D ( c ) ,  

in contradiction to AfpA = 0. 

self-adjoint operator C1 associated with q1 does not coincide with Co. 
Next we consider a special case where 41 is semi-bounded and closable, but the 

Example 2. In the Hilbert space &p = L2([0,  11; dx) consider the symmetric operators 

i d3 
A =- 3 on D(A)=  { f l f , f ’ , f ’ ~  A([& 11); f , f ,  f’, f ” ~  2’; 3 dx 

f(o)=f’(l)=f’(o)=f’(l)= O},  (17 )  
B = x  onD(B)=&p. 
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furthermore 

d2 
dx 

C = - y  onD(C)={flf,f’,f’EA([O, l ]> ; f , f ’ , f ” , f ”E%;  

d2 CO=-- 
dx2’ 

d2 
dx 

c1= -2, 

Here of course we can write 

AfA . AfB 3 &f, Cif) for all f~ D(A), (26) 

but from (23) and (25) we see that C1 is not identical with CO; actually we have C1 0, 
whereas C o s  7r . 

After these two examples, which illustrate some of the complications one may 
encounter in trying to generalise (2)-(8), we now consider the Schrodinger represen- 
tation of the canonical commutation relation for one degree of freedom. 

2 

Example 3. In the Hilbert space 2 = Lz(W ; dx), consider the Schrodinger couple 
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Applying (I) we get CO = C1 = 1 on 2. The Heisenberg uncertainty relation thus reads 

AfP . A@ 2 %f, f for all f e D ( P ) n D ( Q ) .  (30) 
Since 1, P and Q are the generators of the so-called Heisenberg group with Weyl’s 
relation 

s, t E a ,  (31) eisP eirO = eisr eirQ eisP, 

as group multiplication law, inequality (30) is an example covered by the methods 
developed for representations of Lie groups in Hilbert spaces (Kraus 1967). 

If some pair {A, B} of self-adjoint operators in a Hilbert space X satisfies Weyl’s 
form of the canonical commutation relation (Putnam 1967) 

’ S ’ t E 9 ,  (32) eisA eirB = eisr eirB eisA 

then necessarily 

W f ,  &I- XBf, 4 )  = (f, g), f ,gED(A)nD(B), (3 $1 

holds. Although Weyl’s relation (32) implies (33) and (34), the converse conclusion 
cannot be drawn in general; there exist examples where the uncertainty relation (34) is 
fulfilled but Weyl’s relation (32) does not hold. (But one can prove (Tillmann 1963) 
that equation (33) supplemented by the condition (A + iB)* = (A - iB) suffices to 
guarantee Weyl’s relation (32).) We finally present such an example (Fuglede 1967). 

Example 4. In the Hilbert space %’= Lz(B;  dx), define the essentially self-adjoint 
operators 

I d  
i dx 

A = - -+ exp(C&),  

~ ( A ) = ~ ( B ) = l i n e a r  span { x ”  exp(-rxZ+cx)In EN, r > ~ ,  c E U}, (35) 
and denote their closures by A and B respectively. Then one obtains (Fuglede 1967) 

sl(ftg)=i(Af,Bg)-i(Bf,Ag)=(f,g) on D(A)nD(B), 

C = l  on D(AB) n D(BA), (36) 

c o = c 1 = 1  on X (37) 

AfA AfB 2 4<f, f) on D(A)n D(B).  (38) 

which implies, just as in the foregoing example, 

and therefore 

But this pair {A, B} is not unitarily equivalent to any direct sum of Schrodinger 
couples {P, a}, i.e. A, B do not obey Weyl’s relation (32). 
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