Uncertainty relations and quadratic forms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 111765
(http://iopscience.iop.org/0305-4470/11/9/010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:59

Please note that terms and conditions apply.

Uncertainty relations and quadratic forms

F Gesztesy† and L Pittner
Institut für Theoretische Physik, Universität Graz, A-8010 Graz, Austria

Received 14 March 1978

Abstract

We show that sesquilinear form methods can be used to extend the usual uncertainty relation for symmetric operators to a larger and more natural domain of states.

Consider symmetric operators A, B and the commutation relation

$$
\begin{equation*}
C=\mathrm{i}[A, B] \quad \text { on } \quad D(C)=D(A B) \cap D(B A) \tag{1}
\end{equation*}
$$

then one immediately obtains the inequality

$$
\begin{equation*}
\Delta_{f} A . \Delta_{f} B \geqslant \frac{1}{2}|(f, C f)| \quad \text { for all } \quad f \in D(C) . \tag{2}
\end{equation*}
$$

The symmetric operator C need not be essentially self-adjoint, but we assume that C allows self-adjoint extensions. Since the product $\Delta_{f} A . \Delta_{f} B$ is defined for all $f \in$ $D(A) \cap D(B)$, it should be possible (at least under certain additional assumptions) to extend the inequality (2) to

$$
\begin{equation*}
\left.\Delta_{f} A \cdot \Delta_{f} B \geqslant \frac{1}{2} \right\rvert\,(f, \tilde{C} f) \quad \text { for all } \quad f \in D(A) \cap D(B) \cap D(\tilde{C}), \tag{3}
\end{equation*}
$$

where \tilde{C} denotes a suitable self-adjoint extension of C.
In general, however, one may deduce from relation (1) only a weaker version of the inequality (3), where the expectation value ($f, \tilde{C} f$) is replaced by some quadratic form (the weak commutator) (Kraus 1965). But in the special case where the closures \bar{A}, \bar{B} and \bar{C} are self-adjoint generators of a unitary representation of a two- or three-parameter Lie group, and therefore (1) is implied by the structure of the corresponding Lie algebra (Nelson 1959, Segal 1951), the uncertainty relation (2) can be extended to all states $f \in D(\bar{A}) \cap D(\bar{B}) \cap D(\bar{C})$ (Kraus 1967).

In this paper, by means of sesquilinear forms, we discuss an extension of the inequality (2) in those cases where the commutator C is semi-bounded. In particular we relate the possibility of extending (2) and (3) to properties of sesquilinear forms such as semi-boundedness and closability.

Our precise assumptions about A, B and C are:
(i) A and B are symmetric operators in a Hilbert space \mathscr{H}.
(ii) The commutator $C=\mathrm{i}[A, B]$ on $D(C)=D(A B) \cap D(B A)$ is densely defined in \mathscr{H} and semi-bounded.
In the usual way we introduce

$$
\Delta_{f} A=\left\|\left(A-\langle A\rangle_{f}\right) f\right\|, \quad\langle A\rangle_{f}=(f, A f) /(f, f), \quad f \in D(A)
$$

[^0]and obtain by means of Schwarz' inequality
\[

$$
\begin{align*}
&\left(\Delta_{f} A\right)^{2} \cdot\left(\Delta_{f} B\right)^{2} \\
& \geqslant \geqslant\left|\left(\left(A-\langle A\rangle_{f}\right) f,\left(B-\langle B\rangle_{f}\right) f\right)\right|^{2} \\
&= \frac{1}{4}\left[|(A f, B f)-(B f, A f)|^{2}+\mid\left(\left(A-\langle A\rangle_{f}\right) f,\left(B-\langle B\rangle_{f}\right) f\right)\right. \\
&\left.\quad+\left.\left(\left(B-\langle B\rangle_{f}\right) f,\left(A-\langle A\rangle_{f}\right) f\right)\right|^{2}\right] \\
& \geqslant \frac{1}{4}|(A f, B f)-(B f, A f)|^{2}, \quad f \in D(A) \cap D(B) . \tag{4}
\end{align*}
$$
\]

In order to relate the right-hand side of (4) to the commutator C, we introduce the sesquilinear forms

$$
\begin{array}{ll}
q_{0}(f, g)=(f, C g), & D\left(q_{0}\right)=D(C), \\
q_{1}(f, g)=\mathrm{i}(A f, B g)-\mathrm{i}(B f, A g), & D\left(q_{1}\right)=D(A) \cap D(B) . \tag{5}
\end{array}
$$

From (i) and (ii) we conclude that the form q_{0} is densely defined, symmetric, semibounded and closable (Kato 1966). The self-adjoint operator C_{0} associated with the closure \bar{q}_{0} of q_{0} is just the Friedrichs extension C_{F} of C :

$$
\begin{equation*}
\bar{q}_{0}(f, g)=\left(f, C_{0} g\right), \quad f \in D\left(\bar{q}_{0}\right), \quad g \in D\left(C_{0}\right) ; \quad C_{0}=C_{\mathrm{F}} \tag{6}
\end{equation*}
$$

On the other hand, the form q_{1}, although densely defined and symmetric, need not be closable (cf example 1). If q_{1} is semi-bounded and closable, then the self-adjoint operator C_{1} associated with the closure \bar{q}_{1} of q_{1},

$$
\begin{equation*}
\bar{q}_{1}(f, g)=\left(f, C_{1} g\right), \quad f \in D\left(\bar{q}_{1}\right), \quad g \in D\left(C_{1}\right) \tag{7}
\end{equation*}
$$

evidently is a self-adjoint extension of C, but a priori there is no connection between C_{1} and the Friedrichs extension C_{0} of C (cf example 2). Special assumptions which indeed imply $C_{0}=C_{1}$ are:
(I) Suppose C is essentially self-adjoint; if q_{1} is semibounded and closable then $C_{0}=C_{1}$.
(II) Let B be bounded; if $D(C)$ is a core of A, then q_{1} is semi-bounded and closable, and again $C_{0}=C_{1}$.
Statement (I) only reflects the uniqueness of the self-adjoint extension of an essentially self-adjoint operator, while for the proof of (II) it suffices to note that here q_{1} is a restriction of \bar{q}_{0}. Thus we must distinguish whether the form q_{1} is semi-bounded and closable (case 1) or not (case 2).

Case 1. From (4) and (7) we immediately obtain the extended inequality (3) in the form

$$
\begin{equation*}
\Delta_{f} A \cdot \Delta_{f} B \geqslant \frac{1}{2}\left|\left(f, C_{1} f\right)\right|, \quad f \in D(A) \cap D(B) \cap D\left(C_{1}\right) . \tag{8}
\end{equation*}
$$

Case 2. Here one only gets the weaker relation (Kraus 1965)

$$
\begin{equation*}
\Delta_{f} A \cdot \Delta_{f} B \geqslant \frac{1}{2}\left|q_{1}(f, f)\right|, \quad f \in D(A) \cap D(B) . \tag{9}
\end{equation*}
$$

In order to illustrate these statements we turn to explicit examples. We have already noted that although q_{0} is closable by definition via C, the form q_{1} need not be closable; actually the pair \{angle, angular momentum\} represents a prominent example for such a situation.

Example 1. In the Hilbert space $\mathscr{H}=L^{2}([-\pi,+\pi] ; \mathrm{d} \phi)$ define the self-adjoint operators

$$
\begin{align*}
& L=\frac{1}{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{~d} \phi} \quad \text { on } D(L)=\left\{f \mid f \in A([-\pi,+\pi]) ; f, f^{\prime} \in \mathscr{H} ; f(-\pi)=f(+\pi)\right\}, \\
& \Phi=\phi \quad \text { on } D(\Phi)=\mathscr{H} \tag{10}
\end{align*}
$$

where $A([\alpha, \beta])$ denotes the set of functions which are absolutely continuous on $[\alpha, \beta]$. Then one immediately obtains

$$
\begin{equation*}
\mathrm{i}(L f, \Phi g)-\mathrm{i}(\Phi f, L g)=(f, g)-2 \pi \overline{f(\pi)} g(\pi), \quad f, g \in D(L) \tag{11}
\end{equation*}
$$

L is not essentially self-adjoint on

$$
\begin{equation*}
D([L, \Phi])=\{f \mid f \in D(L) ; f(-\pi)=f(+\pi)=0\} \tag{12}
\end{equation*}
$$

and the spectra are

$$
\begin{equation*}
\Sigma(L)=\mathscr{Z}, \quad \Sigma(\Phi)=[-\pi,+\pi] . \tag{13}
\end{equation*}
$$

We identify

$$
\begin{equation*}
C=\mathrm{i}[L, \Phi]=1 \quad \text { on } \quad D(C)=D([L, \Phi]) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{1}(f, g)=(f, g)-2 \pi \overline{f(\pi)} g(\pi) \quad \text { on } \quad D\left(q_{1}\right)=D(L) \tag{15}
\end{equation*}
$$

The operator C is essentially self-adjoint, but $\overline{f(\pi)} g(\pi)$ (and hence q_{1}) is the canonical example of a non-closable symmetric form. Thus instead of the inequality (8) we only have (Kraus 1965)

$$
\begin{equation*}
\left.\Delta_{f} L . \Delta_{f} \Phi \geqslant\left.\frac{1}{2}\left|\|f\|^{2}-2 \pi\right| f(\pi)\right|^{2} \right\rvert\,, \quad f \in D(L) . \tag{16}
\end{equation*}
$$

For further discussions of this example compare Carruthers and Nieto (1968), Judge (1964), Kraus (1965), and Lévy-Leblond (1976). Concerning the pair \{phase operator, number operator\} (Garrison and Wong 1970), exactly the same conclusions can be drawn. More generally this situation occurs in all cases where C is essentially self-adjoint and $C \geqslant \gamma>0$ (or $C \leqslant \gamma<0$), while A or B has an eigenstate which lies in $D(A) \cap D(B) \cap D(\bar{C})$. Suppose C essentially self-adjoint and $C \geqslant \gamma>0, A f_{\alpha}=\alpha f_{\alpha}$ with $f_{\alpha} \in D(A) \cap D(B) \cap D(\bar{C})$; if q_{1} were semi-bounded and closable, then one would conclude

$$
\Delta_{f} A \cdot \Delta_{f} B \geqslant \frac{1}{2}|(f, \bar{C} f)|>0 \quad \text { for all } \quad f \in D(A) \cap D(B) \cap D(\bar{C})
$$

in contradiction to $\Delta_{f_{\alpha}} A=0$.
Next we consider a special case where q_{1} is semi-bounded and closable, but the self-adjoint operator C_{1} associated with \bar{q}_{1} does not coincide with C_{0}.

Example 2. In the Hilbert space $\mathscr{H}=L^{2}([0,1] ; \mathrm{d} x)$ consider the symmetric operators

$$
\begin{align*}
& A=\frac{\mathrm{i}}{3} \frac{\mathrm{~d}^{3}}{\mathrm{~d} x^{3}} \text { on } D(A)=\left\{f \mid f, f^{\prime}, f^{\prime \prime} \in A([0,1]) ; f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime} \in \mathscr{H} ;\right. \\
&\left.f^{\prime}(0)=f^{\prime}(1)=f^{\prime \prime}(0)=f^{\prime \prime}(1)=0\right\}, \tag{17}
\end{align*}
$$

$$
B=x \quad \text { on } D(B)=\mathscr{H} .
$$

Then obviously

$$
\begin{equation*}
\mathrm{i}(A f, B g)-\mathrm{i}(B f, A g)=\left(f^{\prime}, g^{\prime}\right), \quad f, g \in D(A) \tag{18}
\end{equation*}
$$

furthermore

$$
\begin{align*}
C=-\frac{d^{2}}{d x^{2}} \text { on } D(C)= & \left\{f \mid f, f^{\prime}, f^{\prime \prime} \in A([0,1]) ; f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime} \in \mathscr{H}\right. \\
& \left.f(0)=f(1)=f^{\prime}(0)=f^{\prime}(1)=f^{\prime \prime}(0)=f^{\prime \prime}(1)=0\right\} \tag{19}
\end{align*}
$$

and therefore

$$
\begin{equation*}
q_{0}(f, g)=\left(f^{\prime}, g^{\prime}\right), \quad f, g \in D\left(q_{0}\right)=D(C) \tag{20}
\end{equation*}
$$

whereas

$$
\begin{equation*}
q_{1}(f, g)=\left(f^{\prime}, g^{\prime}\right), \quad f, g \in D\left(q_{1}\right)=D(A) \tag{21}
\end{equation*}
$$

The corresponding closures are
$\bar{q}_{0}(f, g)=\left(f^{\prime}, g^{\prime}\right)$,
$D\left(\bar{q}_{0}\right)=\left\{f \mid f \in A([0,1]) ; f, f^{\prime} \in \mathscr{H} ; f(0)=f(1)=0\right\}$,
$C_{0}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, \quad D\left(C_{0}\right)=\left\{f \mid f, f^{\prime} \in A([0,1]) ; f, f^{\prime}, f^{\prime \prime} \in \mathscr{H} ; f(0)=f(1)=0\right\}$,
and
$\bar{q}_{1}(f, g)=\left(f^{\prime}, g^{\prime}\right), \quad D\left(\bar{q}_{1}\right)=\left\{f \mid f \in A([0,1]) ; f, f^{\prime} \in \mathscr{H}\right\}$,
$C_{1}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, \quad D\left(C_{1}\right)=\left\{f \mid f, f^{\prime} \in A([0,1]) ; f, f^{\prime}, f^{\prime \prime} \in \mathscr{H} ; f^{\prime}(0)=f^{\prime}(1)=0\right\}$.
Here of course we can write

$$
\begin{equation*}
\Delta_{f} A, \Delta_{f} B \geqslant \frac{1}{2}\left(f, C_{1} f\right) \quad \text { for all } \quad f \in D(A), \tag{26}
\end{equation*}
$$

but from (23) and (25) we see that C_{1} is not identical with C_{0}; actually we have $C_{1} \geqslant 0$, whereas $C_{0} \geqslant \pi^{2}$.

After these two examples, which illustrate some of the complications one may encounter in trying to generalise (2)-(8), we now consider the Schrödinger representation of the canonical commutation relation for one degree of freedom.

Example 3. In the Hilbert space $\mathscr{H}=L^{2}(\mathscr{R} ; \mathrm{d} x)$, consider the Schrödinger couple

$$
\begin{array}{ll}
P=\frac{1}{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{~d} x}, & D(P)=\left\{f \mid f \in A_{\mathrm{loc}}(\mathscr{R}) ; f, f^{\prime} \in \mathscr{H}\right\}, \\
Q=x, & D(Q)=\{f \mid f, x f \in \mathscr{H}\}, \tag{27}
\end{array}
$$

where $A_{\text {loc }}(\mathscr{R})$ denotes the set of locally absolutely continuous functions on \mathscr{R}. Here we have

$$
\begin{array}{ll}
q_{1}(f, g)=\mathrm{i}(P f, Q g)-\mathrm{i}(Q f, P g)=(f, g), & D\left(q_{1}\right)=D(P) \cap D(Q), \\
\bar{q}_{1}(f, g)=(f, g), & D\left(\bar{q}_{1}\right)=\mathscr{H} . \tag{28}
\end{array}
$$

On the other hand,

$$
\begin{equation*}
C=\mathrm{i}[P, Q]=1 \quad \text { on } \quad D(C)=D([P, Q]) \tag{29}
\end{equation*}
$$

Applying (I) we get $C_{0}=C_{1}=1$ on \mathscr{H}. The Heisenberg uncertainty relation thus reads

$$
\begin{equation*}
\Delta_{f} P . \Delta_{f} Q \geqslant \frac{1}{2}(f, f) \quad \text { for all } \quad f \in D(P) \cap D(Q) \tag{30}
\end{equation*}
$$

Since $1, P$ and Q are the generators of the so-called Heisenberg group with Weyl's relation

$$
\begin{equation*}
\mathrm{e}^{\mathrm{isP} P} \mathrm{e}^{\mathrm{itQ}}=\mathrm{e}^{\mathrm{ist}} \mathrm{e}^{\mathrm{itO}} \mathrm{e}^{\mathrm{isP} P}, \quad s, t \in \mathscr{R} \tag{31}
\end{equation*}
$$

as group multiplication law, inequality (30) is an example covered by the methods developed for representations of Lie groups in Hilbert spaces (Kraus 1967).

If some pair $\{A, B\}$ of self-adjoint operators in a Hilbert space \mathscr{H} satisfies Weyl's form of the canonical commutation relation (Putnam 1967)

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} s A} \mathrm{e}^{\mathrm{i} t B}=\mathrm{e}^{\mathrm{i} s t} \mathrm{e}^{\mathrm{i} t B} \mathrm{e}^{\mathrm{i} s A}, \quad s, t \in \mathscr{R} \tag{32}
\end{equation*}
$$

then necessarily

$$
\begin{equation*}
\mathrm{i}(A f, B g)-\mathrm{i}(B f, A g)=(f, g), \quad f, g \in D(A) \cap D(B) \tag{3ई}
\end{equation*}
$$

and therefore the inequality

$$
\begin{equation*}
\Delta_{f} A \cdot \Delta_{f} B \geqslant \frac{1}{2}(f, f), \quad f \in D(A) \cap D(B), \tag{34}
\end{equation*}
$$

holds. Although Weyl's relation (32) implies (33) and (34), the converse conclusion cannot be drawn in general; there exist examples where the uncertainty relation (34) is fulfilled but Weyl's relation (32) does not hold. (But one can prove (Tillmann 1963) that equation (33) supplemented by the condition $(A+i B)^{*}=\overline{(A-i B)}$ suffices to guarantee Weyl's relation (32).) We finally present such an example (Fuglede 1967).

Example 4. In the Hilbert space $\mathscr{H}=L^{2}(\mathscr{R} ; \mathrm{d} x)$, define the essentially self-adjoint operators
$\dot{A}=\frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d} x}+\exp (\sqrt{2 \pi} x), \quad \dot{B}=x+\exp \left(-\sqrt{2 \pi} \frac{1}{\mathrm{i}} \frac{\mathrm{d}}{\mathrm{d} x}\right)$,
$D(\dot{A})=D(\dot{B})=$ linear span $\left\{x^{n} \exp \left(-r x^{2}+c x\right) \mid n \in \mathcal{N}, r>0, c \in \mathscr{C}\right\}$,
and denote their closures by A and B respectively. Then one obtains (Fuglede 1967)

$$
\begin{align*}
& q_{1}(f, g)=\mathrm{i}(A f, B g)-\mathrm{i}(B f, A g)=(f, g) \quad \text { on } \quad D(A) \cap D(B), \\
& C=1 \quad \text { on } D(A B) \cap D(B A), \tag{36}
\end{align*}
$$

which implies, just as in the foregoing example,

$$
\begin{equation*}
C_{0}=C_{1}=1 \quad \text { on } \quad \mathscr{H} \tag{37}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Delta_{f} A . \Delta_{f} B \geqslant \frac{1}{2}(f, f) \quad \text { on } \quad D(A) \cap D(B) . \tag{38}
\end{equation*}
$$

But this pair $\{A, B\}$ is not unitarily equivalent to any direct sum of Schrödinger couples $\{P, Q\}$, i.e. A, B do not obey Weyl's relation (32).

References

Fuglede B 1967 Math. Scand. 20 79-88
Garrison J C and Wong J 1970 J. Math. Phys. 11 2242-9
Judge D 1964 Nuovo Cim. 31 332-40
Kato T 1966 Perturbation Theory for Linear Operators (New York: Springer)
Kraus K 1965 Z. Phys. 188 374-7

- 1967 Z. Phys. 201 134-41

Lévy-Leblond J M 1976 Ann. Phys., NY 101 319-41
Nelson E 1959 Ann. Math. 70 572-615
Putnam C R 1967 Commutation Properties of Hilbert Space Operators and Related Topics (New York: Springer)
Segal I E 1951 Duke Math. J. 18 221-65
Tillmann H G 1963 Acta Sci. Math., Szeged 24 258-70

[^0]: \dagger Supported by Fonds zur Förderung der wissenschaftlichen Forschung in Österreich, Projekt Nr. 3225.

